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Operations summary Memigs

ISRU Experiment e

* 16 O,-producing runs on Mars
*x 122 ¢ O, produced in 1213 minutes operation (average 6.1 g/ hr)

* MOXIE mission ended programmatically as of Sept. 30, 2023

(Blue ovals represent original notional plan)

0024 l
(@]
Q

0022 &

N . 1,2
Nighttime maximum

FM-OC23

FM-OC20
—
FM-OC21

FM-OC13
FM-OC14
FM-OC17
2 Y
‘l FM-OC24
]
V4

—~ 0.02 #7

™

kg/m

=.0.018

Density

0.016 | f
mﬂ

Daytime minimum

0.014

o S |

FM-OC11

0.012- 600 700 800 900

* Oxygen produced 9-10 am




Accomplishments Mo
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* Demonstrated

Operation over full range of environmental conditions (P, T, dust)
Tolerance to SOE heat-cool cycles without significant degradation
High production rate, 2x requirement (12 g/hr O,)

High O, purity

Constant voltage mode

Constant pressure mode

Low pressure operation

High fidelity predictive performance model
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Excellent agreement with lab results

* Determined

* Lead resistances and other unknowns
* Inlet tube warming

* Dust penetration is negligible with baffle alone



The path to full-scale

* System level
Operate continuously for over a year
Improved sensing & control
Lower resistance dust filtering

* Scaled-up SOE

Produce >200x more oxygen

Curtail heat loss with a better oven, heat exchange
between inlet & outlet gas

* Scaled-up compressor

Dramatically reduce compression power with low
density operation, controlled inlet temperature

Larger, lower speed for power efficiency

* Operations options
Constant voltage to safely maximize O, production
Fixed current, system design to constant production
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A 60-cell stack developed by OxEon
Energy offers 30x the active area of the
MOXIE stack



Why operate at fixed stack voltage?
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Variable production rate at fixed voltage Mesags
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I-V and C deposition limit (IASR=1)
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Operation at low pressure Mesags
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- Compressor Power vs. Outlet Pressure, 2000 RPM
Inlet pressure was 10.5 mbar(top point) to 6
mbar (bottom point) 5
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Avoiding dust with a simple baffle Memgs
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Capture fraction with increasing particle size
1 | | | | | | | | | |
HH experimental

0.9 r @ simulation |

0.8 [ g

0.7 f -
° P
£ 06 :
4]
£ ¢
W 1R WE y
=
@ 0.4 |
O

03t —¥ -

02r il

% f = é a

0 1 \ \ : & & 1 . .
0 1 2 3 4 5 6 f 4 8 9 10 11
Particle diameter (;:m) 8




Longer-term applications Megs
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* Evolution to co-electrolysis for fuel & oxidizer

Follow by methanation reactor or Fischer-Tropsch for liquid/solid fuels

* Custom applications (e.g. habitat or pressurized rover
oxygen replenishment)

*x CO fuels (e.g. for hopper)

* Energy storage?




What's next for MOXIE" Mot
A proposal from Jim Cutts, JPL
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J. |zraeleitz et al, Test Flights... of a-Prototype Venus Aerobot, LPSC 2023



Sponsors and Partners MoEr
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* Supported by HEOMD and STMD
* Mars 2020 Project managed by SMD
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Backup

More MOXIE
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* A scale model of an In Situ
Resource Utilization (ISRU)
plant for a human mission.

rom , Project Manager

* Makes 6-12 g of O, per hour
from atmospheric CO,

*x Like a small tree, or ~50% of
what a person breathes

* Limited by available power to
~1:200 full scale production
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The Solid OXide Electrolysis (SOXE) cell
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General architecture Mo
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Putting It together Moxrgs
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What makes this hard”? Uncertainties affecting @?@‘E)
efficiency and safely.

Mars Oxygen ¥Qu?
ISRU Experiment e

——770°C CO .
=== 770°C CO, '
»
——800°C CO .!
Boudouard —.—-800°C CO, i
Boundary ——830°C CO ]
= ~---830°C CO, /.1.,'
— 'I‘”
= l1
C / !y
8 S
@) Yol '/
d
2 ; '/' / e —
o (Notional o %
Z uncertainty) s =0
1 ’,/’ ”/ )
""""" > /’/"‘/',
e e e
79%  |87%(92%
0.95 : . L 1 1 1 1 1 J
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

CO Mole Fraction at Operational Pressure of 0.868 ATM [%CO]



.&51\‘_»3
Mars Oxygen ‘\\> “y
ISRU Experiment ™%




Operation summary Memgs

ISRU Experiment e

* 7 oxygen-producing runs in CY'21 (starting April 20)
* General demonstration of capabilities
* QOperation over full range of environmental conditions

* 5 oxygen-production runs in CY'22
* Demonstrating safer, more capable modes of operation (Voltage Mode)
* Probing performance limits (high production rate)
* Targeting specific unknown characteristics (O, purity, lead resistance updates)

* 4 oxygen-production runs in CY’23

* Demonstration that MOXIE still meets purity and production requirements after >10
cycles on Mars

* Validation of pressure control and low pressure operation -2 first morning run.

* Demonstration of maximum oxygen production rate allowed by current supply (12
g/hr) - over twice the initial requirement

* MOXIE mission was ended as of Sept. 30, 2023 @



O, production in our first run
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Record production in our 15" run Mo
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Robustness (IASR)
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*x Essentially 100% as long as there is an anode (O,) overpressure

O2 purity as a function of nominal cathode overpressure (FM-0C21)
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Stack voltage control: FSOC-09
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Resistance summary
(values in red were derived in situ, on Mars):
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MOXIE compressor recorded by SCAM mic

* Intended as diagnostic of compressor changes

* Also useful as probe of acoustic transmission on Mars
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Sol 276 (turn-on)

Sol 96 (RPM change)

Credit: Sam Hoffman




A useful frequency comb? mme T L

OC10 (sol 81) ~ 0522 LST

SOXE heater 8418
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What have we learned about MOXIE" Mexigs
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* With careful operation, MOXIE is surprisingly robust against thermal cycling, dust,
changes in atmospheric density and temperature

* A few simple changes will greatly improve power efficiency to ~90%:
* Operation at much lower cathode pressure
* A well-insulated surrounding oven
* Heat exchange from gas input to gas output

* A few more will greatly improve autonomy and safety

Separate voltage sense wires (instead of sensing through power wires)
An accurate flow meter and composition sensor

A capable processor with dynamically tunable control algorithms

* ok ok F

Materials improvements to enhance resistance to carbon deposition

* Dust mitigation will be straightforward
* Dust is not well entrained in the air and won’t go around corners!

* Models show full system <1000 kg and <25 kW including liquefaction

28
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* Pre-validate Mars operations
* Develop and test techniques for safer, more efficient operation on Mars
*x Perform experiments that can’t be done on Mars (e.g. long lifetime tests)

* Explore new technologies, subsystems, and contfigurations
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The MOXIE engineering model (EM) is The MOXIE FlatSat (FS) is an open
packaged like the FM, with minor assembly using the same subsystem 29
differences in fabrication. components as the EM.
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* Accomplishments included:
* Compressor power characterization vs outlet pressure
* Low cathode pressure operation for power efficiency
* Cathode pressure (P4) feedback operation for safety and stability
* Lead resistance measurement and validation of “thermal sweep” technique

* Recent developments:
* Remote operation capability (for long-duration tests)

* Flight electronics emulator running flight software with commercial modules
(to buffer against future board failures and provide more testing flexibility)

30
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Where to find MOXIE data M@ﬁg)

PDS: The Planetary Atmospheres Node

[HOME | ABOUTUS | DATAANDSERVICES | EDUCATION | CONTACTUS | EXTERNALLINKS

Data Catalog ADS NASA Astrophysics Data System  NASA Research Solicitations  Abstracts of Funded NASA Proposals

Atmospheres data and
related services

Atmospheres data
Software

PDS Nodes

PDS
Atmospheres

Welcome to the Mars 2020 Perseverance Archive

Feb 22, 2021 (Ls 8.0 MY 36) to [ongoing]
Geosciences

Cartography and Imaging

Navigation & Ancillary
Information Facility (NAIF)

Planetary Plasma MaStc am-Z ot SuP,ercam

|ntel’acti0ns (PPI) Zoomable Pancramic Cameras Laser Micro-imager

Ring-Moon Systems - SHERLOC
| URranvioiot Spectrometer

Small Bodies : ‘

WATSON (Camera)

RIMFAX
| Mars Summary Page | e 8
Mars Orbiter
Mariner 9
Viking Orbiter 1
Viking Orbiter 2
Mars Global Surveyor
Mars Odyssey ' ; >
Mars Express N v X-raty Spectrometer

Mars Reconnaissance
Orbiter

MAVEN MOXIE

Produces Oxygen from Martian CO,
Mars Lander

Viking Lander
Mars Pathfinder A schematic showing the location of MOXIE and other major instruments. Credit NASA/JPL-Caltec

Mars Exploration Rover

Mars Phoenix Lander Experiment Overview
Mars Science Laboratory -
Curiosity
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